

Course Title: Advanced Engineering Mathematics

Date: 1/6/2024

Course No: (640711) – MSc. Course

Time Allowed: 3 Hours

Lecturer: Dr. Mohammed Mahdi

No. of Pages: 8

Q1 / 30	Q2 / 20	Q3 / 20	Q4 / 30	Total / 100	Total / 40

Question 1: Part - 1 Multiple Choice Questions (12 /40 marks) 30%

- When adding two skew-symmetric matrices the resultant matrix is also skew matrix.
A) Always true B) Sometimes true C) Always false D) Sometimes false
- Given $A = \begin{bmatrix} 4 & 7 \\ -9 & 9 \end{bmatrix}$ then it is:
A) Orthogonal B) Symmetric C) Hermitian D) None of the given
- For $f(t) = (3 + 4 t^2)$, $F(s)$ equals to:
A) $\frac{3s^2+8}{s^3}$ B) $\frac{3s^2-8}{s^3}$ C) $\frac{3s+8}{s^3}$ D) None of the given
- For $F(s) = \frac{2s-7}{s^2+25}$, $f(t)$ is:
A) $2\sin 5t - 7/5 \sin 5t$ B) $2\cos 5t - 7/5 \sin 5t$ C) $2\cos 5t - 7/5 \cos 5t$ D) None of the given
- The sum of the Eigen values of the matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ is:
A) 15 B) 18 C) 16 D) None of the given
- The quadratic form related to the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$ is:
A) Negative definite B) Positive definite C) Positive semi definite D) Indefinite
- Cayley – Hamilton theorem can be applied to obtain exponential matrix for:
A) Distinct Eigen values B) Multiple Eigen values C) Single Eigen value D) All given choices

8. A second order Lagrange interpolating polynomial that passes through points (17, 25), (19, 38), (24, 40) is $fL_2(x) = L_0(x)*(25) + L_1(x)*(38) + L_2(x)*(40)$ then $L_0(21)$ is:

A) 0.4285 B) - 0.4285 C) - 0.5285 D) None of the given

9. To find the function $y = Ax + B$, linear regression is applied to the following data $(0, -4), (1, 2), (2, 8), (3, 14)$, then the value of B is found to be:

A) -6 B) -4 C) 6 D) None of the given

10. Non-linear regression model is found to be $4.5e^{0.2x}$, and then the related value of B in the linearized model is:

A) 1.504 B) -1.504 C) 90.0171 D) None of the given

11. Applying Euler numerical integration method to integrate $\frac{dy}{dt} = y$, with step size $h = 0.5$, and $y(1) = 0.3678$. $y(1.5)$ is found to be:

A) 0.4417 B) 0.5517 C) 0.7517 D) None of the given

12. Using Newton-Raphson iterative method, the first iteration root approximation of the equation $e^x = 4x$ with $x_0=2$ is:

A) 2.183 B) 0.2183 C) 0.3517 D) None of the given

Part – 2 (28/40 Marks) 70 %

Note: Show all calculations

Question 2:

(20 % Marks)

Objectives: This question is about complex numbers and solving difference equations.

A) Find real x and y if $(x - iy)(3 + 5i)$ is the conjugate of $-6 - 24i$. (10 Ms)

B) Given the following difference equation $x(k+2) + 0.4 x(k+1) - 0.32 x(k) = u(k)$
with $x(0) = 0$, $x(1) = 1$ with $u(k)$ is a unit step change of input. It is required
to find $x(kT)$ then evaluate $x(\infty)$ using two methods. (10 Ms)

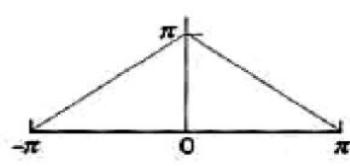
Question 3:**(20 % Marks)**

Objectives: This question is about matrices and McLaurin series

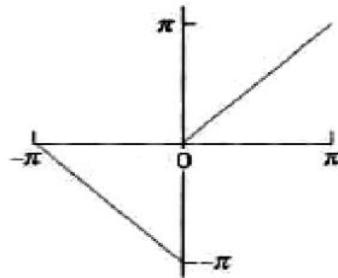
A) Given the following (3x3) matrix $A = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ it is required to find:

1. Eigen values.
2. Definiteness
3. Show relationship between $\text{trace}(A)$ and its Eigen values.
4. Find Eigen values of A^4 .

(10 Ms)


B) Find the McLaurin series of $f(x) = \cos(x)$.

(10 Ms)


Question 4:**(30 % Marks)**

c)
Objectives: This question is about series and Fourier Transform.

A) Find the constant Fourier series coefficients (a_0) for the following periodic functions: (15 Ms)

(1)

(2)

B) For the following series determine the Center, radius and limits of convergence. (15 Ms)

$$\sum_{n=1}^{\infty} \frac{6^n}{n} (4x - 1)^{n-1}$$